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Abstract

The Genome 10K Project was established in 2009 by a consortium of
biologists and genome scientists determined to facilitate the sequencing
and analysis of the complete genomes of 10,000 vertebrate species. Since
then the number of selected and initiated species has risen from ~26
to 277 sequenced or ongoing with funding, an approximately tenfold
increase in five years. Here we summarize the advances and commit-
ments that have occurred by mid-2014 and outline the achievements and
present challenges of reaching the 10,000-species goal. We summarize
the status of known vertebrate genome projects, recommend standards
for pronouncing a genome as sequenced or completed, and provide our
present and future vision of the landscape of Genome 10K. The endeavor
is ambitious, bold, expensive, and uncertain, but together the Genome
10K Consortium of Scientists and the worldwide genomics community
are moving toward their goal of delivering to the coming generation the
gift of genome empowerment for many vertebrate species.
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INTRODUCTION

The advent of low-cost, high-throughput sequencing has ushered in a new age of genome science
and has forever changed the landscape of biological research. Projects that could only be dreamt of
10 years ago are now becoming a reality. The Genome 10K Project (hereafter the G10K Project) is
one such project (1-3). Sequencing 10,000 vertebrate genomes is an ambitious and worthy goal
that will provide a foundation for diverse research and exciting discovery for decades to come. We
originally selected a goal of 10,000 species (from a total of over 62,000 named vertebrate species)
(Figure 1) as a round number target that was achievable, and which includes nearly every species
with even modest biological knowledge available plus several thousand species without much
knowledge. A detailed description of the rationale is presented in the original G10K White paper (1).

The G10K Project was founded in 2009 by bringing together biologists, bioinformaticians, and
computational scientists to accumulate and organize specimens, to develop standards for genome
assembly and annotation, and to facilitate the release and use of the genome data created through
the project. At the first G10K workshop in Santa Cruz, California (April 13-16, 2009), biologists
who curated museum or personal frozen collections of biospecimens were convened and asked to
develop a list of vertebrate specimens available in collections globally, which then would become
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Figure 1

Consensus phylogeny of the major lineages of vertebrates. Topology and divergence dates (Ma) are consensus
estimates derived from References 1 and 276 and included citations. Following the common names of
taxon groups in parentheses are number of living species for that group and number of species with published
and/or pending genomes (see Tables 2 and 3).
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the basis of the G10K Project. Amazingly, the group found that 16,203 vertebrate species had
already been collected and were housed in existing collections. These were collated into a database
(http://genome10k.soe.ucsc.edu) that became the foundation for developing initial plans for
whole genome sequencing (WGS) (1).

Since 2009, the G10K Project has grown in membership, in responsibilities, in recognition, and
in stewardship. At the most recent G10K workshop (April 24-28, 2013) in Fort Lauderdale,
Florida, over 150 scientists gathered to develop plans for future genome sequencing and discuss
analytical and computational challenges and the exciting results from the first ~270 vertebrate
genomes sequenced to date. Here, we provide an overview of the goals, responsibilities,
accomplishments, and insights of the G10K Project, where the project stands today with regard to
the vertebrate genomes that have been sequenced thus far, and the remaining challenges involved
in reaching the goal of sequencing 10,000 vertebrate genomes.

GENOME 10K RESPONSIBILITIES

The G10K Community of Scientists (G10KCOS) established six primary goals or responsibilities
to drive the project forward (Table 1). Our first charge was to accumulate biospecimens that
would provide the DNA necessary to develop reference-quality genomes. The 2009 G10K meeting
identified over 16,000 species from existing collections in museums, universities, and zoos around
the world and cataloged that inventory in an open-access database accessible to the entire
community (https://genomel0k.soe.ucsc.edu/biospecimen_database). Samples included in this

Table 1 Goals of the Genome 10K Project (see text for details)

1. Gather and validate voucher biospecimens for whole genome sequencing (WGS)

2. Develop scientific communities around the species, taxonomic groups, and analytical themes (e.g.,
assembly, annotation, alignment, comparative genomic analyses)

3. Set standards for genome

a. Assembly

b. Annotation

c. Release on browsers

d. Rapid data release

4. Monitor progress on vertebrae WGS projects

5. Raise funds

6. Foster and support other genome consortia, such as the following:

a. Insect 5K (i5K) http://www.arthropodgenomes.org/wiki/i5SK

b. Global Invertebrate Genomics Alliance (GIGA) http://www.nova.edu/ocean/giga/

c. Consortium for Snake Genomics http://www.snakegenomics.org/SnakeGenomics/Home.html

d. 1000 Fungal Genomes Project (1KFG) http://1000.fungalgenomes.org/home/

e. NSF Plant Genome Research Program (PGRP) http://www.nsf.gov/pubs/2014/nsf14533/nsf14533.htm

f. 100K Foodborne Pathogen Genome Project http://100kgenome.vetmed.ucdavis.edu
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virtual repository ranged from extracted genomic DNA to frozen tissues to cell lines. In addition to
compiling this virtual list, we produced an in-depth report of best practices for obtaining and
storing vertebrate biospecimens for WGS (4).

A second goal of the G10K Project is to foster the development of research communities
centered either around the genomes of species or species groups (e.g., birds) or around bio-
informatics themes, namely genome assembly, annotation, alignment, and comparative analyses.
Such communities are vital because not only do they help establish criteria for the selection of
species to be sequenced but they also ensure interdisciplinary collaboration among scientists with
diverse research experiences. For example, whereas one scientist may intend to use a reference
genome to analyze genome architecture, another may use the same data to search for evidence of
positive selection. Thus, an open-access genome becomes a commodity that drives multifaceted
research programs in different fields. Within the G10K Project, communities of scientists are
broadly organized around the major classes of vertebrates (fishes, amphibians, nonavian reptiles,
birds, and mammals), and these communities strive to identify target species for genome se-
quencing that benefit the largest group of scientists and fill major genome sampling gaps across the
vertebrate tree of life.

A third goal of the G10K Project is to develop a strong and scientifically vetted set of standards
concerning specimen selection, DNA preparation, genome assembly, genome feature annotation,
whole genome alignment, comparative analyses, and data release. Despite the tremendous
progress that has been made in genomics, the field itself is still in an experimental state with no
established best practices in the generation and analysis of genome data. Various genomic groups
develop their own ideas about sample quality and quantity for de novo sequencing as well as about
what constitutes a high-coverage genome. They often use home-brew or unvetted software, even
though several groups have established that software programs developed for assembly, anno-
tation, and alignment differ markedly in accuracy and efficiency (5-8). G10K scientists aim to
develop a set of consensus-based best practices regarding genomic data generation and analysis. For
example, given a shark, frog, or microbat, which tissue(s) would be most useful in producing genomic
libraries? How should these biospecimens be preserved? How is DNA derived from them handled?
Which sequencing libraries should be prepared? Given the choice of among 20+ genome assembly
algorithms and programs, which one produces the most accurate assembly, and what parameters are
best for evaluating this? The G10KCOS is developing informed guidelines in addressing issues such
as these through collaborations between biologists and bioinformaticians. A preliminary snapshot of
G10K endorsed standards is presented in the sidebar, Draft Standards for Genome 10K.

A fourth responsibility for the G10KCOS is to record the progress of vertebrate WGS by
maintaining a database of completed and ongoing projects being carried out by genome se-
quencing centers and by independent research laboratories around the world (http://genome10k.
soe.ucsc.edu/species). By doing this, we not only avoid duplication of efforts, given the still
relatively high expense of generating and annotating reference-quality genomes, but also help to
target the species that will maximize research dividends and increase breadth of phylogenetic
coverage in the vertebrate tree of life (9). Table 2 presents a list of 164 vertebrate species with
a published genome sequence, and Table 3 lists an additional 113 vertebrate species for which
genome sequencing is accomplished or near completion.

The fifth goal of the G10K Project, raising funds, is an evolving exercise. The G10K Project was
initially predicated on the expectation that the costs associated with genome sequencing would
decrease rapidly, making it relatively affordable to sequence vertebrate genomes with size scales
similar to the human genome (10-12). However, even as sequencing costs decline, the cost of data
processing and bioinformatic analysis remains substantive. The G10KCOS is addressing this
challenge by fostering training workshops that empower computer-savvy students in analysis of
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DRAFT STANDARDS FOR GENOME 10K

The G10KCOS continued an ongoing process of setting standards for “doing a vertebrate genome” that actually
began in 2009 with the first G10K workshop. The groups recognized nine important areas for discussion and
recommendations that all bear on what a G10K species genome project should encompass. Detailed reports about
each of these areas have been or will be published separately and deposited on the G10K website for guidance in
nomination and sequence analyses of present and future selected species. Similar recommendations for standards
have appeared for other genome consortia (Table 1). The areas of consideration, discussed throughout this article
but summarized here, include

1. Standards for biospecimen collections and DNA provision. In general, approximately 100 pg of high—
molecular weight DNA (>50 Kbp) are ideal for construction of high-molecular weight mate-pair libraries.
These should be from a single individual selected for minimal heterozygosity to optimize assembly. A
detailed description of standards for DNA collection, storage, and processing for G10K has appeared (4).

2. Recommendations for WGS of males and females. G10K recommends that sequencing of both a male and
female be considered for each new species. Comparisons of male to female genomes implicate specific (Y or
W) sequences, including dosage-dependent gene regions critical for pinpointing the sex-determining gene
(s) (e.g., Reference 131). If sequencing both sexes is not possible, the heterogametic sex should be chosen,
because XY males and ZW females represent both sex chromosomes and comprise unabridged sex
chromosome genes useful for quality control, population, and forensic applications.

3. Sequencing standards. These standards involve optimal quality control standards for current generation
sequencing, including >60X coverage to assure that >98% of the species’ euchromatic genome is represented.

4. Assembly standards. G10K standards for assembly encourage large contig and scaffold N50 (on the order
of megabases), while minimizing (to a very few) the number of false joins that create chimeric scaffolds
using an independent physical map-based framework. There is a cost-benefit consideration here, as some
physical maps are very accurate but impractical owing to expense in many species (e.g., a pedigree linkage
map in a humpback whale). Physical maps can be generated by various methods (Table 4), and a promising
but as-yet-unfulfilled hope is the connecting of contigs to scaffolds using long-read technologies that are
not yet optimized or scaled to larger vertebrate genomes (Table 4). Nonetheless, every good genome
sequence seems to benefit from high-resolution physical maps (20).

5. Genome annotation standards. A G10K genome should have genes, SNPs, indels, repetitive elements, and other
genome features annotated so the noncomputational user can access the genomic features and aspects readily.
Table 5 gives a listing of some standard genome features and publically available software that help annotate them.

6. Standards for archiving and placing a genome in a browser. It is essential that a final genome assembly be
submitted to the International Nucleotide Sequence Database Collaboration (INSDC, http://www.insdc.
org/) so that it is available in a standard repository to all scientists. Submission to the INSDC can occur
through the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/
genbank/), European Bioinformatics Institute (http://www.ebi.ac.uk/ena), or DNA Databank of Japan
(http://www.ddbj.nig.ac.jp/). The G10KCOS also encourages that all new genomes should be loaded into
a genome browser, such as Gbrowse (132), JBrowse (133), track data hubs on the UCSC Genome Browser
(134), NCBI, or Ensembl, for viewing and downloading. This format for viewing genomes is convenient
and familiar and very much more useful to biological researchers than a trace archive or raw reads.

7. Standards for genome alignment. Every species’ genome has an evolutionary context and is indisputably
connected to all others in a deep evolutionary genealogy that must be better understood. The first step in
comparative genomics is to align homologous segments across related genomes so that comparative
analyses can be achieved. No perfect algorithm for genome alignment has been developed or claimed,
especially for the large vertebrate genomes we discuss here. The Alignathon community of G10K has
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endeavored to maximize consensus experience in the Alignathon competition discussed elsewhere in this
article (51). Achievement of best practices and transfer of these alignment methods to the next generation
of genome scientists are goals that the G10KCOS embraces.

. G10K data release. The G10KCOS endorses rapid publication and release of genome sequences in the

spirit of facilitating wide uses and application. All species’ genome sequences, assembly, and annotation
shall be released freely with public access upon publication or within two years of delivery of a sample to
a sequencing facility, whichever comes first. The latter clause is intended to handle cases of delayed
publication.

. Platinum Genome 10K species. Owing to cost limitation, not all species will enjoy the scientific rigor

demanded by the standards outlined above; indeed, some light-coverage sequences will be assessed, e.g.,
for SNP discovery, with no attention to de novo assembly and annotation. To facilitate genomic studies of
such genomes, selected reference genomes called platinum genomes should be nominated for major
taxonomic groups (e.g., orders or large families that differ by 30-50 My of evolutionary time). The
G10KCOS will nominate reference species for which high-resolution physical maps or a long-insert
sequencing equivalent will be generated and monitor the progress of such projects to maximize genome
opportunities for these platinum species.

genome data (see below for these bioinformatics challenges). The G10KCOS endorses research
development grants and proposals that facilitate local funding of genome projects and encourage
investigator-initiated fund development from government, corporate, and entrepreneurial re-
sources. G10K has signed memorandums of understanding with large sequencing centers, such as
BGI-Shenzhen and the Broad Institute, to work together to increase the quality and quantity of
vertebrate genome sequencing endeavors. For example, in 2010 BGI-Shenzhen agreed to sequence
and fund the first ~1% (105 species) of vertebrate genomes in close collaboration with the
G10KCOS. At this writing, whole genome sequences have been completed for 70% of these

species, and of these, 43 have been published (Tables 2 and 3).

Initial publication of a genome sequencing project frequently generates additional funding,
particularly when the published genome of a species stirs excitement and enthusiasm in the public
imagination. Whether it is the genome of the giant panda (13), with its revelations about the
genetics of its ability to digest bamboo; the elephant shark (14), as a model for the evolution of the
vertebrate body plan; or the minke whale (15), providing a glimpse into the adaptations associated
with becoming aquatic, many of the opportunities we already have with today’s sequencing

technology are too enticing to pass up while waiting for technology to improve.

Lastly, the G10K Project has spread across biology to inspire similar large community initiatives
to sequence the genomes of nonvertebrate species (our sixth goal), including insects (i5K), noninsect
marine invertebrates (GIGA), plants (NSF Plant Genome Research Program), fungi (1000 Fungal

Genomes Project), and microbes (100K Foodborne Pathogen Genome Project) (see Table 1).

BIOINFORMATICS CHALLENGES TO WHOLE GENOME SEQUENCE
ANALYSES

The G10KCOS is presently working to identify and prioritize the next set of vertebrate species for
genome sequencing (e.g., Reference 16). This process relies on insights from the bioinformaticians
who will lead the assembly and analysis of the sequence data (17, 18). A critical first step in genome
assembly is to determine what sequence data will be most useful to maximize the potential for de
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Table 3 List of 113 vertebrate genomes that either are unpublished or have been targeted for de novo sequencing through the
BGI-G10K collaborative effort

GENBANK
ACCESSION
COMMON or BGI-G10K

SPECIES NAME ORDER FAMILY species

CHONDRICHTHYES

Sphyrna mokarran Great hammerhead Carcharhiniformes Sphyrnidae BGI-G10K

shark

ACTINOPTERYGII

Acipenser sinensis Chinese sturgeon Acipenseriformes Acipenseridae BGI-G10K

Amia calva Bowfin Amiiformes Amiidae BGI-G10K

Polypterus senegalus Bichir Polypteriformes Polypteridae BGI-G10K

Hoplostethus Orange roughy Beryciformes Trachichthyidae BGI-G10K
atlanticus

Astyanax mexicanus Blind cave fish Characiformes Characidae BGI-G10K

Carassius auratus Prussian carp Cypriniformes Cyprinidae BGI-G10K
gibelio

Megalobrama Wuchang bream Cypriniformes Cyprinidae BGI-G10K
amblycephala

Hypophthalmichthys Silver carp Cypriniformes Cyprinidae BGI-G10K
molitrix

Gobiocypris rarus Rare gudgeon Cypriniformes Cyprinidae BGI-G10K

Hippocampus comes Tiger tail seahorse Gasterosteiformes Syngnathidae BGI-G10K

Scleropages formosus Golden arowana Osteoglossiformes Osteoglossidae BGI-G10K

Chaenocephalus Blackfin icefish Perciformes Channichthyidae BGI-G10K
aceratus

Eleginops maclovinus Patagonian blenny Perciformes Eleginopidae BGI-G10K

Boleophthalmus Mudskipper Perciformes Gobiidae BGI-G10K
pectinirostris

Periophthalmus Giant-fin Perciformes Gobiidae BGI-G10K
magnuspinnatus mudskipper

Sinocyclocheilus Golden Line fish Cypriniformes Cyprinidae BGI-G10K
grahami

Dissostichus mawsoni Antarctic toothfish Perciformes Nototheniidae BGI-G10K

Pseudosciaena crocea Large yellow Perciformes Sciaenidae BGI-G10K

croaker
Sparus aurata Gilthead sea bream Perciformes Sparidae BGI-G10K
(Continued)
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Table 3 (Continued)

GENBANK
ACCESSION
COMMON or BGI-G10K
SPECIES NAME ORDER FAMILY species
Paralichthys olivaceus Bastard halibut Pleuronectiformes Paralichthyidae BGI-G10K
Thunnus albacares Yellowfin tuna Scombriformes Scombridae BGI-G10K
Epinephelus coioides Grouper Perciformes Serranidae BGI-G10K
Platycephalus Sand flathead Scorpaeniformes Platycephalidae BGI-G10K
bassensis
Siganus oramin Pearl-spotted Perciforms Siganidae BGI-G10K
spinefoot
Monopterus albus Finless eel Synbranchiformes Synbranchidae BGI-G10K
Mola mola Ocean sunfish Tetraodontiformes Molidae BGI-G10K
Amphilophus Midas cichlid Cichliformes Cichlidae CCOE00000000
citrinellus
Anguilla anguilla European eel Anguilliformes Anguillidae AZBK00000000
Anoplopoma fimbria Sablefish Perciformes Anoplopomatidae AWGY00000000
Astyanax mexicanus Blind cave fish Characiformes Characidae APWO00000000
Cyprinodon Amargosa pupfish Cyprinodontiformes Cyprinodontidae JSuu00000000
nevadensis
Cyprinodon variegatus Sheepshead minnow Cyprinodontiformes Cyprinodontidae JPKMO01000000
Haplochromis burtoni Burton’s Cichliformes Cichlidae AFNZ00000000
mouthbrooder
Lepisosteus oculatus Spotted gar Semionotiformes Lepisosteidae AHAT00000000
Neolamprologus Princess cichlid Cichliformes Cichlidae AFNY00000000
brichardi
Notothenia coriiceps Black rockcod Perciformes Nototheniidae AZADO01000000
Oreochromis niloticus Nile tilapia Cichliformes Cichlidae AERX00000000
Pampus argenteus Silver pomfret Scombriformes Stromateidae JHEKO00000000
Pimephales promelas Fathead minnow Cypriniformes Cyprinidae JNCD01000000
Poecilia formosa Amazon molly Cyprinodontiformes Poeciliidae AYCK00000000
Poecilia reticulata Guppy Cyprinodontiformes Poeciliidae AZHG00000000
Pundamilia nyererei Flame back cichlid Cichliformes Cichlidae AFNX00000000
Salmo salar Atlantic salmon Salmoniformes Salmonidae AGKD00000000
(275)
Sebastes nigrocinctus Tiger rockfish Perciformes Sebastidae AUPRO00000000
(Continued)
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Table 3 (Continued)

GENBANK
ACCESSION
COMMON or BGI-G10K
SPECIES NAME ORDER FAMILY species
Sebastes rubrivinctus Flag rockfish Perciformes Sebastidae AUPQ00000000
Stegastes partitus Bicolor damselfish Perciformes Pomacentridae JMKMO00000000
AMPHIBIA
Xenopus (Silurana) African clawed frog Anura Pipidae http://www.
laevis xenbase.org/entry/
Ascaphus truei Coastal tailed frog Anura Ascaphidae BGI-G10K
Spea bombifrons Plains spadefoot Anura Scaphiopodidae BGI-G10K
toad
Bufo marinus Cane toad Anura Bufonidae BGI-G10K
Limnodynastes Eastern banjo frog Anura Limnodynastidae BGI-G10K
dumerilii
Oophaga pumilio Strawberry dart- Anura Dendrobatidae BGI-G10K
poison frog
Physalaemus Tungara frog Anura Leiuperidae BGI-G10K
pustulosus
Eleutherodactylus Coqui Anura Eleutherodactylidae BGI-G10K
coqui
Nanorana parkeri Tibetan frog Anura Dicroglossidae BGI-G10K
Gastrotheca cornuta Horned marsupial Anura Hemiphractidae BGI-G10K
frog
Ichthyophis Banna caecilian Gymnophiona Ichthyophiidae BGI-G10K
bannanicus
“REPTILIA”
Sphenodon punctatus Tuatara Sphenodontia Sphenodontidae AWC-G10K
Eublepharus Leopard gecko Squamata Gekkonidae BGI-G10K
macularius
Heloderma suspectum Gila monster Squamata Helodermatidae BGI-G10K
Podarcus muralis Wall lizard Squamata Lacertidae BGI-G10K
Ophisaurus harti Chinese glass lizard Squamata Anguidae BGI-G10K
Aspidoscelis arizonae Western whiptail Squamata Teiidae BGI-G10K
Pogona vitticeps Central bearded Squamata Agamidae BGI-G10K
dragon
(Continued)
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Table 3 (Continued)

GENBANK
ACCESSION
COMMON or BGI-G10K
SPECIES NAME ORDER FAMILY species
Shinisaurus Chinese crocodile Squamata Shinisauridae BGI-G10K
crocodilurus lizard
Apalone spinifera Spiny softshell turtle Testudines Trionychidae APJP00000000
AVES
Zonotrichia albicollis White-throated Passeriformes Fringillidae ARW]00000000
sparrow
MAMMALIA
Acinonyx jubatus Cheetah Carnivora Felidae BGI-G10K
Panthera leo Lion Carnivora Felidae BGI-G10K
Puma concolor coryi Puma Carnivora Felidae BGI-G10K
Crocuta crocuta Spotted hyena Carnivora Hyaenidae BGI-G10K
Vulpes vulpes Red fox Carnivora Canidae BGI-G10K
Connochaetes taurinus Blue wildebeest Cetartiodactyla Bovidae BGI-G10K
Elaphurus davidianus Pere David’s deer Cetartiodactyla Cervidae BGI-G10K
Sousa chinensis Chinese white Cetartiodactyla Delphinidae BGI-G10K
dolphin
Giraffa camelopardalis Giraffe Cetartiodactyla Giraffidae BGI-G10K
Tragulus napu Greater Malayan Cetartiodactyla Tragulidae BGI-G10K
chevrotain
Oryx gazella Gemsbok Cetartiodactyla Bovidae BGI-G10K
Muntiacus reevesi Chinese muntjac Cetartiodactyla Cervidae BGI-G10K
Muntiacus muntjak Indian muntjac Cetartiodactyla Cervidae BGI-G10K
Desmodus rotundus Common vampire Chiroptera Phyllostomidae BGI-G10K
bat
Dromiciops gliroides Monito del monte Microbiotheria Microbiotheriidae BGI-G10K
Tachyglossus Short-beaked Monotremata Tachyglossidae BGI-G10K
aculeatus echidna
Equus przewalskii Mongolian horse Perissodactyla Equidae BGI-G10K
Fukomys damarensis Damaraland mole Rodentia Bathyergidae BGI-G10K
rat
Spermophilus dauricus Daurian souslik Rodentia Sciuridae BGI-G10K
ground squirrel
(Continued)
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Table 3 (Continued)

GENBANK
ACCESSION
COMMON or BGI-G10K
SPECIES NAME ORDER FAMILY species
Bison bison American bison Cetartiodactyla Bovidae JPYT00000000
Bubalus bubalis Water buffalo Cetartiodactyla Bovidae AWWX00000000
Cavia aperea Brazilian guinea pig Rodentia Caviidae AVPZ00000000
Ceratotherium simum Southern white Perissodactyla Rhinocerotidae AKZMO00000000
simum rhinoceros
Chinchilla lanigera Long-tailed Rodentia Chinchillidae AGCD00000000
chinchilla
Chlorocebus sabaeus Green monkey Primates Cercopithecidae AQIB00000000
Chrysochloris asiatica Cape golden mole Afrosoricida Chrysochloridae AMDV00000000
Condylura cristata Star-nosed mole Eulipotyphla Talpidae AJFV00000000
Elephantulus edwardii Cape elephant shrew Macroscelidae Macroscelididae AMGZ00000000
Eptesicus fuscus Big brown bat Chiroptera Vespertilionidae ALEH00000000
Galeopterus variegatus Sunda flying lemur Dermoptera Cynocephalidae JMZW 00000000
Jaculus jaculus Lesser Egyptian Rodentia Dipodidae AKZC00000000
jerboa
Leptonychotes Weddell seal Carnivora Phocidae APMU00000000
weddellii
Manis pentadactyla Chinese pangolin Pholidota Manidae JPTV00000000
Mesocricetus auratus Golden hamster Rodentia Cricetidae APMTO00000000
Microtus ochrogaster Prairie vole Rodentia Cricetidae AHZW00000000
Mustela putorius furo Domestic ferret Carnivora Mustelidae AEYP00000000
Octodon degus Degu Rodentia Octodontidae AJSA00000000
Odobenus rosmarus Pacific walrus Carnivora Odobenidae ANOP00000000
divergens
Orcinus orca Killer whale Cetartiodactyla Delphinidae ANOL00000000
Orycteropus afer Aardvark Tubulidentata Orycteropodidae ALYB00000000
Papio anubis Olive baboon Primates Cercopithecidae AHZZ700000000
Peromyscus North American Rodentia Cricetidae AYHNO00000000
maniculatus deer mouse
Physeter catodon Sperm whale Cetartiodactyla Physeteridae AWZP00000000
Saimiri boliviensis Bolivian squirrel Primates Cebidae AGCE00000000
monkey
Trichechus manatus Florida manatee Sirenia Trichechidae AHIN00000000

latirostris
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novo and reference-guided genome assembly. Large-insert genomic libraries, long sequence reads,
and physical map-based technologies are crucial in assembling longer contiguous sequence
fragments. High-quality (undegraded) DNAs in high-microgram quantities are required. Better
methods for de novo genome sequencing from smaller (nanogram) amounts of DNA will make
sample collection easier for many additional smaller species. Another important consideration for
genome assembly is the size and repeat content of the target genome. Larger and more repetitive
genomes will be more costly to sequence and assemble. Complex and abundant repeat families
present in many species confound genome assembly, especially if the repeating units are long and
highly similar to one another. Unfortunately, it is not always possible to determine the repeat
content of a genome until some preliminary sequence sampling has been performed.

Another key bioinformatics challenge is sequence heterozygosity and its disposition across the
genome. Available assembly algorithms erect a haploid reference genome by merging the in-
formation from the two parental genome sequences, often making arbitrary phase assignments,
frequently producing chimeric contigs and scaffolds. A highly heterozygous individual can make
assembly inaccurate or impossible. This can be assuaged by selecting highly inbred or haploid
individuals, but these are unavailable for most species. Abundant segmental duplications, which
may appear as additional haplotypes, add to the problem. These may be polymorphic, and hence
heterozygous as well. Mixtures of DNA from multiple individuals, undertaken to obtain sufficient
input DNA for some sequencing libraries, create an additional layer of complexity.

Given the current challenges in assembling a large (>>3-Gbp), repeat-rich genome with a high
level of heterozygosity, many such genome projects are being deferred until the future. Even for
typical vertebrate genomes, there is constant awareness that the longer one waits to sequence one’s
favorite genome, the cheaper and higher quality it will become. Species for which genomic
sequences were generated and assembled relatively early in the large-scale comparative genomics
era can be of lower quality, with inaccurate assemblies, missed paralogs, and chimeric chro-
mosomal segments [see, for example, the platypus (19) and giant panda (13) genomes; 20].
Assemblies for certain species that were first to be sequenced (e.g., chicken, chimpanzee) have been
validated and improved using complementary mapping and assembly approaches, but they are
expensive and time consuming. Prioritizing species for sequencing is a complex process that must
balance the needs of individual communities, the overall G10K effort, funding constraints, and
emerging technologies.

EVALUATING GENOME ASSEMBLIES

The initial step in making a genome useful to the biological community that studies a species is to
produce an assembly of the millions of short DNA reads obtained from next-generation se-
quencing technology into an ordered and oriented sequence of contigs that resembles the order in
which the assembled sequence actually occurs on each chromosome (see References 20-22).
Genome assembly begins with homology match detection of reads to build short contigs. Contigs
are then joined with mate pair end reads to form scaffolds, which within ideal assemblies span
millions of base pairs. The process is completed when scaffolds are assembled into chromosomes
using independent physical framework maps. The G10KCOS has evaluated a dozen or more
available computational assembly tools, termed assemblers, which have been developed to ac-
complish this process in the Assemblathon competitions (7, 8). The challenges are detecting and
correcting assembly mistakes caused by repeat sequence families, by copy number variation of
certain DNA stretches, and by single-nucleotide variants (SNPs), the stuff of evolution and the
scourge of a basic assembler (e.g., Reference 21). Assemblathon competitions first compared
different assembly tools using a simulated vertebrate genome (7) and then three genome sequences
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from a cichlid fish, a parakeet, and a snake (8). The Genome Assembly Gold-standard Evaluation
consortium and study further evaluated assembly quality of genomes across a broad array of
species (5).

Lessons learned from the Assemblathons and other evaluations have led to the development of
new assemblers. DISCOVAR de novo (http://www.broadinstitute.org/software/discovar/blog/;
23) is a new assembler developed at the Broad Institute that avoids the need for polymerase chain
reaction (PCR) and in fact requires PCR-free libraries. This leads to improvements because
compositional biases present in PCR-based approaches confound assemblers by generating
nonuniform read depth. Although DISCOVAR is currently being used for resequencing projects,
its real promise may be to assemble de novo genomes.

To evaluate assembly quality, new metrics have also been developed beyond N50 (the smallest
length N such thatatleast 50% of the bases in the assembly are in contigs of that length or greater).
Probabilistic measures based on likelihood statistics have been used and shown to provide more
accurate and objective evaluations of assembly quality, independent of a reference genome (24—
26). For example, the program CGAL uses the uniformity of genome coverage to evaluate the
likelihood of assembly quality while simultaneously taking into account sequencing errors, insert
size distribution, and extent of unassembled data (26). When CGAL was applied to the
Assemblathon 1 data set, assemblies with a higher extent of coverage tended to be more accurate.
These methods allow researchers to optimize parameters associated with assembly programs to
obtain better-quality assemblies (with higher likelihood values) and are likely to become standard
tools in obtaining high-quality assemblies (25).

A major finding of the Assemblathon studies is that there is considerable variation among
output assemblies. Users cannot simply merge the outputs of many assemblers to arrive at an
optimal consensus assembly. One assembly program, Metassembler (M. Schatz, unpublished
data; http://schatzlab.cshl.edu/presentations/2011-11-03.Genome %20Informatics.pdf), actu-
ally does this, butits accuracy is no better than its best constituents. Assembly is a complex problem
with many trade-offs, and there are no easy solutions (25). Has genome assembly with short reads
reached a point of diminishing returns? At the G10K 2013 workshop, we learned that though
many algorithms are still in development, accuracy is not substantially improved when only short
reads are available, suggesting new sequencing approaches are needed to make the next quantum
leap.

Large-Insert Sequencing Methods

New methods that improve the outlook for de novo genome assembly by sequencing large inserts
with distinctly barcoded short reads are on the horizon. Protocols based on sequencing fosmid
pools (~30 kb/fosmid) have gotten less expensive while still achieving long-range order and
orientation of contigs (27, 28) (Table 4). Illumina-Moleculo technology, at approximately 10 kb
per independently barcoded insert, provides similar benefits at lower cost. Its cost and overall
feasibility for G10K have not been well established, though several groups have recently used
[llumina-Moleculo reads to haplotype the human genome, with promising results (29).

Table 4 lists promising new long-read technologies, although each of these is as yet unproven
for very large-scale (~3-Gbp) genome assembly. The single-molecule, real-time sequencing
technology (SMRT) manufactured by Pacific Biosciences (PacBio) has been available for several
years, but its higher relative cost and higher basic error rate have restricted its use to microbial
genomes and eukaryote transcriptomes (30, 31). However, ongoing improvements in SMRT
sequencing are beginning to ameliorate these concerns (32), and high-quality assemblies can often
be obtained through hybrid approaches in which assemblies are generated using both short reads

Koepfli et al.


http://www.broadinstitute.org/software/discovar/blog/
http://schatzlab.cshl.edu/presentations/2011-11-03.Genome%20Informatics.pdf

08T Surdf101dey swouad sjoy SOLI],
sdew

6T Surddew swosowoIyd ajoyx\ prIq4Ay uonerpey

9¢—¢ Suid£f1o1dey swouad sjoy K Surdfiopdey wiadg

Jwod xpumuenb-mmm//:dny (OFS-O) Surduanbas a[nosjow-a3urg Xnuend)
Suipeas [eondo

/uod-orquaSojqoummm//:dny pue sarodoueu yam Sudpuanbas s[nosjow-a[3uIg ud3a[qON

/w0 udgiase]//:dny A3ojouyo33 103EUILLI) SUIIYSIT uodiase]

oy diyoeruad-mmm//:dny sarodoueu yaim Sudpuanbas snosjow-a[3ulg BIUAD)
(SNINED)

/oo shsdeusd//:dny SAIISUIG-BI[[) PAIBISIIUI-OUBN] JTUOIIII[ dUIL) skgdeuany

/W02 01qRIU0NIId//:dNy

Suuanbas spndsjow-s[3uts arodoueN

$90UDIDGOIY JIU01II[T

/W02 sdnuoudgsorens mmm //:dny

(X4qs) vorsuedxy
£q Surouanbag 4q Surouanbas anosjow-aurg

SOIWIOUAL) SOIBIIG

Juod sAsqeummm//:dny

$1010919poUBU YIM Surduanbas anosjow-a3urg

sAsqeN

/W0 sonuoudSoueuorq mmm//:dny

sfe1re [puueydOURU/SUISEWI I[NII[OW-I[SUIS

SOIWOUIL) OUBNOIg

/o> uagdo mmm//:dny

Surddew swouas ajoy

uondQ

/w02 soruoud gz dwod mmm//:dny

sfe1reoueu YN Surjquiasse-Jog

Rejttilelicly)
aapdwo) 1oy

Jwod yoatprodoueummmy//:sdny

Sursuas axodoueN

arodoueN pio3xQ

[unyA3ojouyda-Suuonbas

-peai-guoj/Sunuanbas-uonerouss-1xou/43ojouryal/wod eurun|Immm //:dny

spear re[nosjouwr Juo|

O[NI9[OJA eUTWIN][]

wod*sadudsoIgIyed mmm//:dny

Suipuanbas swn-[ear ‘Omosjow-a[3ulg

SIOUDIISOIY dYBJ

UONBWLIOJUI I0W /T )

ASojouyda ],

poyyouwr 10 uriope[q

81

www.annualreviews.org * The Genome 10K Project

sarjquiasse dwouds saoxdur 01 astwoxd ey sarSojourda Surddew pue pear-Suog § dqe],

*Ajuo asn [eucsiad 104 'GT/8T/Z0 UO 1jde0d Bid-sre|y 1a Aq
B10'sM 1. [enuUe” MMM WOJJ PaPeo lUMOQ “TTT-/S:€'STOZ '19501g "WIUY "ASY "NUUY


http://www.pacificbiosciences.com
http://www.illumina.com/technology/next-generation-sequencing/long-read-sequencing-technology.html
http://www.illumina.com/technology/next-generation-sequencing/long-read-sequencing-technology.html
https://www.nanoporetech.com/
http://www.completegenomics.com/
http://www.opgen.com/
http://www.bionanogenomics.com/
http://www.nabsys.com/
http://www.stratosgenomics.com/
http://electronicbio.com/
http://genapsys.com/
http://www.geniachip.com/
http://lasergen.com/
http://www.noblegenbio.com/
http://www.quantumdx.com/

Annu. Rev. Anim. Biosci. 2015.3:57-111. Downloaded from www.annualreviews.org
by Dr. Klaus-Peter Koepfli on 02/18/15. For personal use only.

82

(e.g., llumina) and long reads (e.g., PacBio) (33). Oxford Nanopore long reads have evoked
considerable hopefulness as genome scientists are piloting genome assembly for accuracy, fea-
sibility, and cost effectiveness. As various long-read technologies improve and their prices fall, it is
likely that they will become part of typical genome assembly efforts.

Mapping Methods to Assist in Assembly

Mapping methods can also be used to improve assembly. Richard Durbin from the Wellcome
Trust Sanger Institute proposed at the 2013 G10K meeting the sequencing of trios (mother, father,
child) to improve genome assembly through a direct haplotype-phase resolved linkage map (280).
Using SNP variation as an information source in assembly is a unique and potentially powerful
new strategy that would anchor scaffolds to an ad hoc haplotype map. However, this approach
does require additional sequencing. These techniques are an addition to single-sperm genome
amplification (producing individual genome-wide haplotypes as well as whole genome assemblies)
and other sequencing approaches that in theory can build a recombination and/or physical map
using bioinformatics analysis (34-36).

Framework physical maps have been a mainstay for anchoring genome assemblies of model
species (human, mouse, rat, dog, cat, and others) (20). However, linkage and radiation hybrid
physical maps for these genome projects are rather expensive for wider-scale use. Optical mapping,
a relatively new tool for building an independent physical map to anchor assembled scaffolds of
sequenced genomes (e.g., Reference 37), was evaluated favorably in Assemblathon 2 (8). Map-
generating technologies pioneered by BioNano Genomics, the Irys System, use rare-cut genomic
DNA subjected to electrophoretic current to produce physical maps as well (38, 39). Physical or
optical mapping methods can be used to improve graph navigation (40), to validate chromosomal
ordering of contigs, and to detect and break up chimeric contigs. Random fosmid sequencing was
also used as a kind of physical map for evaluation in Assemblathon 2. Although laborious and
expensive, clone-based sequencing has the advantage of reduced size and no sequence heterozygosity.
Genome assemblers can benefit from transcriptome information (41) to guide their algorithms as
well as from comparative syntenic similarity employed by the Reference-Assisted Chromosome
Assembly algorithm (42). These avenues of research must be explored more thoroughly as genome
alignment and comparative genome analyses become more central to the G10K Project.

GENOME ANNOTATION

Genome annotation encompasses the description of a variety of elements that can be identified in
a species’ genome, from protein-coding regions and intervening noncoding sequence to repeat
families, noncoding RNAs, regulatory motifs, and specific elements (Table 5). For identification of
protein-coding genes, transcriptome information via RNA-seq data is invaluable before, during,
and after a genome has been assembled (6). Noncoding RNA genes, such as structural RNAs,
microRNAs, and long noncoding RNAs, are also identified by RNA-seq in conjunction with
bioinformatics sequence analysis and play key roles in the cell (e.g., Reference 43). One of the main
reasons to sequence a genome is to investigate its genes, and RNA-seq can provide some of this
information at a fraction of the cost of a whole genome assembly. Flanking the genes, one finds
a variety of regulatory elements, some of which are highly conserved between species and hence
recognized from sequence, whereas others are more rapidly evolving and require experimental
assays involving chromatin immunoprecipitation followed by sequencing (ChIP-seq) or DNase I
hypersensitive site sequencing.

Available software programs for discerning genes and other features (Table 5) have been
employed to unravel the secrets of new genomes on a regular basis. There are no precise best
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practices for gene selection, SNP discovery, or repeat annotation, although it has been shown that
consistency may be low across different algorithms and methods [e.g., SNP calling (44) or re-
construction from RNA-seq data (45)]. The G10KCOS is considering an annotation-collaborative
exercise (such as the Assemblathons and the Alignathon) to develop more explicit guidelines for
vertebrate genome annotation.

GENOME ALIGNMENT

A comparative genomics approach between related species is fundamental to the identification
and analysis of genes, their regulatory elements, and their adaptive natural history (6, 46-48). As
such, comparative analyses of homologous genes in a syntenic context among related well-
annotated species is a mainstay of annotation pipelines (49, 50). Such analysis depends heavily
upon accurate multiple genome alignments. Exceptions to gene sequence conservation can indicate
evolutionary gene changes, chromosome rearrangements, gene family expansion or contraction,
and SNP-based signatures of historic selection. Discerning these genome modifications allows
critical insights into the events occurring over the course of speciation and divergence of taxa. But
comparative analysis of genomes from distantly related species is not simple, rather akin to
comparing the assembly blueprints of a Boeing 747 to a Mercedes-Benz sedan, to a Yamaha motor
scooter, and to a tricycle. A first step is to design an efficient strategy for aligning the entire
gigabase-long genomes of related species.

Genome alignment, the task of aligning all the homologous nucleotides in a set of complete
genomes, including those in noncoding regions, is critical if we are to establish the genetic rela-
tionships and, by extension, evolutionary history of our shared vertebrate ancestry. Genome
alignment can be thought of as a generalized form of the DNA alignment problem, in that all other
(classical) forms of alignment are a subclass of this general problem. The Alignathon competition
invited participants to submit solutions to constructed or collected data sets (51). Three in-
dependent data sets, two simulated from primates and mammals and one a set of 20 Drosophila
genomes, were offered for trial of various alignment algorithms. All the data sets involved genomes
of approximately 200 Mbp in length, a decision made to create a meaningful challenge that was
nonetheless accessible to the broadest possible range of tools. In all, 35 different analytical solu-
tions were submitted by 10 teams using 12 distinct alignment pipelines (51).

Several important conclusions were reached through the Alignathon competition. First, rela-
tively few groups and very few tools are currently capable of making precise genome alignments
even at the scale of the 20-Drosophila-genome data set. For example, 11 of the 35 submitted
alignments were computed using variants of the Multiz alignment pipeline (52), which is now over
ten years old. Second, many current genome alignment tools have noticeable limitations. In
particular, many of the entries were reference-based (genomes aligned to a reference genome as
a key step), which produced a noticeable bias in the quality of alignments between nonreference
genomes. Notably, only two of the alignment teams attempted to align multiple paralogous
sequences. Third, there are few broad metrics for assessing genome alignments of real genomes that
can be used to assess the quality of the alignment across the genome, and which do not rely on
expert biological information (e.g., the location of annotations), and even fewer that have robust
implementations. Fourth, consistent results were found between the simulation study and metrics
for assessing the real alignments (53). Lastly, there exists tremendous variability in performance
between alignment programs, though there is much less variance when aligning closely related
organisms. With increasing evolutionary distance between compared species, all the various whole
genome alignment tools get progressively less reliable.
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The Alignathon was successful in revealing both the strengths and weaknesses of available whole
genome alignment tools, but there remain several important directions for future work that, when
pursued, will provide valuable information for the G10K and eukaryotic genomics community as
awhole. A proposed second Alignathon competition in the future would address the following topics:

1. the impact of assembly errors on alignment. Addressing this would ideally be an
integrative analysis with the Assemblathon group.

2. scaling to larger genome sizes with greater complexity and more repeats; i.e., evaluating

and comparing results of full-size vertebrate genome alignments.

a comparison of methods for the alignment of genes within genome alignments.

4. the accuracy of cross-validation methods; one way to assess genome alignments is to set

(O8]

aside the sequence of a target genome and then assess how closely an imputed ancestral
genome based upon a genome alignment of the other genomes matches the target
genome. Such approaches have been used previously (52, 54) but never for complete
genomes and genome alignments.

Computing genome alignments is computationally intense and requires several thousand CPU
hours per genome. One of the main problems encountered in the first Alignathon was the lack of
groups with sufficient computational power to compete. This is a critical problem that must be
addressed by the development of more efficient methods, coupled to an increased commitment to
provisioning more powerful computer resources for multiple alignments.

PROGRESS AND FUTURE PLANS FOR WHOLE GENOME SEQUENCING OF
10,000 SPECIES

In the five years since Genome 10K was proposed, the genomes of 277 vertebrate species have been
proposed, funded, accomplished at some level, and released; of these, the genomes of 164 species have
been reviewed and published (Tables 2 and 3). These achievements reflect efforts from larger se-
quencing centers, independent projects from individual teams, the BGI-G10K collaboration, and
other G10KCOS initiatives, altogether a remarkable accomplishment. An additional 200+ species are
named on websites of sequencing centers (BGI, the Broad Institute, the Baylor College of Medicine
Human Genome Sequencing Center, The Genome Institute at Washington University, and others) as
pending, with a substantial degree of uncertainty about their timetable for completion. The initial
G10KCOS selection of species has been discussed (1), and a wealth of vertebrate evolutionary ge-
nomic diversity is beginning to be produced. Next, we summarize the challenges, accomplishments,
and insights of G10K to date regarding the five principal taxonomic classes of vertebrates (Figure 1).

FISHES

More than half of all vertebrate species are fishes, which include the jawless (Agnatha), carti-
laginous (Chondrichthyes), lobe-fin (Sarcopterygii), and ray-fin (Actinopterygii) fishes, with the
latter group being the most diverse in number of species (Figure 2). The first nonhuman vertebrate
genomes to be sequenced were those of the teleost fishes, a group that contains many species with
genomes that are unusually small in size and therefore amenable to whole genome shotgun se-
quencing (e.g., fugu, Takifugu rubripes; 55, 56). Since then, a draft genome sequence from another
pufferfish species, Tetraodon nigroviridis, has been produced (57), along with the genomes of the
medaka (Oryzias latipes), three-spined stickleback (Gasterosteus aculeatus), zebrafish (Danio
rerio), and platyfish (Xiphophorus maculatus), all of which serve as important model organisms
for studies of gene function in development and adaptive evolution (58-61). Annotation of the
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zebrafish genome revealed over 26,000 protein-coding genes as well as the highest number of
species-specific genes yet found for any vertebrate species whole genome sequenced to date. This
large gene number is likely due to the whole genome duplication event that occurred early in the
history of teleost fishes, resulting in the formation of numerous functional gene duplicates (60).
Since these earlier studies, the number of fish WGS projects, both published and ongoing, has
increased dramatically, providing many key insights related to physiological adaptations and
vertebrate evolution (62, 63).

Given the breadth of vertebrate species diversity represented by the fishes, the majority of
species planned to be de novo sequenced by the G10K Project will be fishes, particularly the tel-
eosts (see Reference 16). As a first step toward that goal, 30 of the first 105 species to be selected for
WGS through the collaborative efforts of BGI and G10K are fishes, including one cartilaginous
fish, the elasmobranch great hammerhead shark (Sphyrna mokarran); two representatives of the
early-branching Chondrostei; and 27 species of teleost fishes that encompass 12 orders. At this
writing, the genomes of 24 fish species are published and 47 others are near completion (Tables 2
and 3). In anticipation of future genome sequencing efforts, the G10K fish community has
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identified a global list of 100 fish species that were nominated as gold standards, in that besides
WGS, transcriptomes and stable cell lines will be generated for these species (16).

AMPHIBIANS

Amphibians comprise approximately 11% of vertebrate species. New taxa are described and
reported for this group every year, implying that total amphibian biodiversity may be greatly
underestimated (64). Among 7,300 named amphibian species, we currently have whole genome
sequences available for only two species, both being anurans and from the same genus, the western
clawed frog [Xenopus (Silurana) tropicalis] and the African clawed frog [Xenopus (Silurana)
laevis] (Tables 2 and 3) (65; see also http://www.xenbase.org/entry/). Genome size is extremely
variable within amphibians, varying by as much as ~130-fold (66, 67). Further, amphibians
harbor some of the largest genomes, which has significantly hampered progress in the sequencing
of additional amphibian genomes. The largest tetrapod genomes are found within the salamanders
(Caudata), with sizes ranging from ~14 to ~120 Gb (68). Preliminary genomic scans of several
salamander taxa indicate that large genome size may be related to the extensive proliferation of
long terminal repeat retrotransposons (69). Such large genomes increase the cost of collecting raw
data (many more libraries are needed to achieve adequate coverage) and increase the computational
complexity of the assembly and analysis of those data. Additionally, the small physical size of most
amphibians limits the amount of tissue that is available for making large-insert mate-pair libraries.

Despite the challenges and high costs of obtaining a diversity of amphibian genomes, there are
reasons that these costs may be justifiable to some extent, considering how underrepresented this
important group is currently among the list of completed vertebrate genomes (Table 2). Future
developments in assembly strategies, especially the use of long reads discussed above (Table 4),
may enable large genomes to be assembled more readily. Given the remarkable and unique
adaptations developed in this vertebrate class, the complete absence of an understanding of the
diversity of amphibian genome structure, content, and evolution poses a major gap in our
knowledge of living vertebrates (66).

Among the first 105 species nominated for WGS through the BGI-G10K collaborative effort,
nine amphibians were chosen to represent a broad level of divergence across the (mostly) anuran
tree of life (Table 3). Species targeted for WGS include the coastal tailed frog (Ascaphus truei),
a member of the Archaeobatrachia, which includes species showing primitive characteristics not
found in other anurans and therefore represents a key lineage in the anuran tree of life. Also
included is a member of the amphibian order Gymnophiona (caecilians), represented by the Banna
caecilian (Ichthyophis bannanicus). At present, sequencing has been completed for the Tibetan
frog (Nanorana parkeri), now in the draft assembly stage. At least one other independent anuran
genome project is under way, that of the cane toad (Rhinella marina), a species originally found in
Central and South America but later introduced into Hawaii, Australia, and parts of Oceania,
where it has become an invasive (70). This species is also in the assembly stage.

WGS has also begun on well-studied frog species with relatively small genome sizes, such as the
tangara frog (Physalaemus pustulosus), important in studies of sexual selection (71); the coqui frog
(Eleutherodactylus coqui), important in studies of the evolution of direct development (72); and
the plains spadefoot toad (Spea bombifrons), important in studies of speciation and adaptive
hybridization (73). An additional small-genome species, the eastern banjo frog from Australia
(Limnodynastes dumerilii), provides phylogenetic breadth. BGI-G10K is also taking on one large-
genome species, the strawberry dart-poison frog (Oophaga pumilio), important for studies of
rapid phenotypic evolution under natural and sexual selection (74). WGS data collection should
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begin soon on the last of the nine amphibian G10K species, including the horned marsupial frog
(Gastrotheca cornuta), with its unusual reproductive biology and high conservation concern (75).

Looking toward the future, we see three main priorities for sequencing the genomes of addi-
tional amphibian species. First, a high-quality assembly should be provided from at least one
member of each of the three extant amphibian orders (Anura, Caudata, and Gymnophiona). The
BGI-G10K-selected amphibian species will meet two-thirds of this goal with sequencing the
genomes of nine Anura and one Gymnophiona species (Table 3). As for Caudata, independent
efforts are currently under way to sequence and assemble the genome of the Mexican axolotl
(Ambystoma mexicanum), an important model organism used for research in a variety of fields,
including embryogenesis, regenerative biology and medicine, neurology, and sensory biology (see
http://www.ambystoma.org/). Amphibians are the sister group to amniotes, and complete
genomes from representatives of all three amphibian orders could therefore provide new in-
formation about the characteristics of the amniote ancestral genome and how vertebrate lineages
have diverged since this ancestor (76).

The second priority would expand WGS and annotation to incorporate species with smaller-
sized genomes. Because a reference genome assembly is paramount to genome analyses, frog
species with small genomes remain high-priority targets for platinum genome sequencing projects
today (see sidebar, Draft Standards for Genome 10K). Furthermore, the availability of high-
quality RNA samples for transcriptome sequencing from frozen viable cell cultures opens new
opportunities for assisting the advancement of amphibian genomics.

A third priority would target species pairs or larger groups that allow genomic analysis of one of
the many biological phenomena that are prominent in amphibian evolution. These include species
that produce medically important skin toxins and antimicrobial peptides (77). Genomic data may
also be important to many conservation interventions in amphibians and to understanding sus-
ceptibility and resistance to chytrid fungal infection and decline, e.g., of Atelopus and Lithobates
(78, 79). Finally, the next round of amphibian genome sequencing will certainly need to greatly
increase phylogenetic coverage of the amphibian tree of life to facilitate comparative genomic
analyses, and in so doing will hopefully provide greater geographical representation as well.

NONAVIAN REPTILES

Living “reptiles” comprise three main lineages: () turtles (Testudines); (b) tuatara, lizards, and
snakes (Lepidosauria); and (c) alligators and crocodiles (Crocodylia). Reptiles are an ancient
group, which is reflected in their extensive diversity; for example, the divergence among major
squamate groups (e.g., snakes and lizards) is similar in magnitude to that between humans and
kangaroos (~175 My) (80). This diversity manifests across many traits, reflected in appreciable
genetic and morphological innovation across reptilian lineages. For example, across reptile species
there exists a broad range of life history traits related to reproduction and sex determination.
Among the most remarkable are repeated transitions across the phylogeny between environmental
and genotypic sex determination (81). Furthermore, species with genotypic sex determination can
have sex chromosome systems with either female (ZZ/ZW) or male (XX/XY) heterogamety. These
sex chromosomes, and presumably the sex-determining genes they contain, are not conserved
across lineages even though the basic syntenic blocks making up the karyotype are conserved
(reviewed in Reference 82). Reptiles are therefore excellent models for the study of evolution of sex
determination, and of sex chromosomes. Annotation, mapping, and comparison of whole genome
sequences from both sexes are invaluable tools for understanding the evolutionary processes
governing sex determination (83) and promise to identify, for the first time, a sex-determining gene
in a reptile. Squamates (lizards and snakes) are also the only vertebrate group to have true
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parthenogenesis, or asexual reproduction without any input (genetic or otherwise) from males
(84). They are thus excellent systems to investigate the consequences of asexuality in amniotes on
a whole genome scale (85).

Despite the extreme variations in genomic content and characteristics present within reptiles
(86), they have remained a relatively neglected target of large-scale genome sequencing efforts. A
handful of recent nonavian reptile genome sequencing and assembly projects have been motivated
by addressing phylogenetic questions and the genomic basis of specific biological questions. The
first published nonavian reptile genome, that of the green anole lizard, Anolis carolinensis,
revealed a nucleotide organization (isochores) unlike that of any other sequenced vertebrate to
date (87-89). Since then, genomes for two snake species, the Burmese python (Python molurus
bivittatus) and the king cobra (Ophiophagus hannah), have been published and indicate that
snakes may have reevolved GCisochore structure (90-92). Analyses of snake genomes also suggest
that the ancestral snake lineage experienced unprecedented levels of positive selection on protein-
coding genes, that repeat element content varies widely across snakes, and that snake organ
remodeling after feeding is associated with massive shifts in gene expression (90, 91). Draft genome
sequences for four species of crocodilians, the American alligator (Alligator mississippiensis), the
gharial (Gavialis gangeticus), the saltwater crocodile (Crocodylus porosus), and the Chinese
alligator (Alligator sinensis), have been completed and published (93, 94). Together, these
crocodilian genomes provide important insights into the ancestral genomes of archosaurs and
amniotes and hold potential for understanding characteristics of dinosaur genomes (93). The sister
phylogenetic relationship of turtles and archosaurs (birds and crocodiles) was recently affirmed
with the complete genome sequence from the western painted turtle, Chrysemys picta (95), which
also found that turtles have evolved at a remarkably slow rate at the molecular level. Crocodiles
have an even slower rate (93). Thus, current reptilian genomics projects are largely motivated by
the specific biological and evolutionary questions that their genomes can address, and ongoing or
proposed projects continue to develop among independent research groups or through research
consortiums (e.g., the Consortium for Snake Genomics) (Table 1).

Eleven nonavian reptile species were nominated for de novo genome sequencing and assembly
through the BGI-G10K collaboration (Tables 2 and 3). Draft assemblies have been completed for
eight of these species, of which three have been published (94, 96). Among the species chosen is the
tuatara, Sphenodon punctatus, the sole representative of the relictual lineage Rhyncocephalia,
which is likely sister to the squamate reptiles. The rarity and significance of this species made
obtaining samples for WGS a permitting challenge, and the relatively large genome size (~5 Gb)
has also hampered efforts to obtain a reference genome at high coverage.

Other reptilian target species were chosen to address particular questions with regard to key
biological characteristics. The Gila monster, Heloderma suspectums, is being sequenced to identify
the genes involved in venom evolution (e.g., Reference 97). The Australian central bearded dragon
lizard, Pogona vitticeps, is also being targeted because this species provides an ideal model to
examine the genomic underpinnings of environmental and genetic sex determination. Gender in
this lizard is usually determined by a pair of ZZ or ZW sex microchromosomes (98), but ZZ
individuals can be reversed to the female phenotype at high temperatures (99). An annotated
genome sequence for the dragon lizard P. vitticeps is currently available online (https://genomics.
canberra.edu.au), and a partial physical map for this species is nearing completion. For two turtle
species published, the green turtle (Chelonia mydas), a marine species, and the soft-shelled turtle
(Pelodiscus sinensis) (96), genome sizes averaged about 2.2 Gb. Comparative genomic analyses
indicated dramatic expansion in the olfactory receptor gene family in both species and the loss of
several orthologous genes involved in normal development and energy homeostasis (96). Whole-
embryo gene expression analysis of both turtle species showed global repatterning of gene
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regulation following the divergence between the turtle and chicken lineages through which the
unique body plan of turtles may have evolved (96).

Future priorities for WGS of additional taxa of nonavian reptiles is collectively based on the
number of interesting biological questions such genomes may address, the availability of samples,
species having smaller genome sizes and low heterozygosity, and overall vertebrate genome di-
versity. Species selected for the next round of WGS have been prioritized to address such questions,
including the following: (@) the evolution and molecular mechanisms underlying genetic and
temperature-dependent sex determination; (b) molecular underpinnings of extreme morpho-
logical and molecular convergent evolution; (c) extreme phenotypes (e.g., horns, gliding in lizards,
adhesive toe pads, projectile tongues); (d) responses of widely distributed species to past and
present climate change; (e) evolution and persistence of parthenogenetic lineages, evolution of
deadly venom toxins, and loss of limbs and sight; (f) evolution of viviparity; and (g) the evolu-
tionary placement of debated lineages within the evolutionary tree of nonavian reptiles. Because
there are several independent research groups producing moderate-quality genomes of reptiles, the
G10KCOS is targeting species that could add value to these other genomes by providing a platinum
reference genome of related species.

BIRDS

Modern birds trace their origins to the Jurassic epoch (over 150 Mya), when a theropod lineage of
the widespread and successful reptilian dinosaurs spawned a group that would be the only survivors
of the Cretaceous-Paleogene dinosaur extinction (~66 Mya) (100). Today, Aves represents the most
specious class of terrestrial vertebrates, with some 10,500 bird species occupying a plethora of
adaptive niches. One hypothesis is that Neoaves birds and placental mammals, comprising more
than 95% of all living bird and mammal species, have captured the ecological niche opportunities
that emerged from the cataclysm of the Cretaceous-Paleogene extinction event 66 Mya, which led to
the extinction of dinosaurs. An alternative hypothesis is that modern birds radiated 10-80 millions of
years before that event (101, 102).

This detailed history, enriched by morphological, behavioral, molecular, and paleontological
inference, has produced a fascinating vertebrate group that has informed evolutionary processes,
neuroscience, developmental biology, and species conservation. Further, several domestic bird
species have significant economic impact (chicken, turkey, ostrich, quail, and others), and many
species have been introduced in the pet trade.

During recent decades, the avian systematics community has developed large repositories that
house high-quality genetic samples of a substantial number of avian species. These collections
provide an essential resource for genomic analyses of avian structural, functional, and behavioral
diversity. With representation from 15 natural history collections distributed globally, the G10K
biospecimen list (1) includes specimens from 100% of the 32 orders, 91% of the 230 families, 73%
of the 2,172 genera, and approximately 50% of the 10,500 species of birds (Figure 3). Each order is
represented in multiple biospecimen collections, as are all but 17 families and all but 585 genera,
ensuring at least one sample of high quality.

Until recently, whole genome sequence assessment was limited to three species, the chicken
(Gallus gallus), domestic turkey (Meleagris gallopavo), and zebra finch (Taeniopygia guttata) (103
105). Further, the phylogenetic relationships among many bird taxa were unresolved or controversial
except for the most coarse-grained divergences (106—108). The smaller genome size of birds relative to
other vertebrates (68) and reduced sequencing costs made it possible to expand WGS efforts into
nonmodel species to expand our understanding of the structure and function of avian genomes (109).
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The avian genomics community has achieved a seminal realization of the vision outlined by
Genome 10K for comparative genomic analyses. With unparalleled collaborative interaction,
a comprehensive multifactorial WGS approach has been mounted by an international team (led by
investigators from BGI, Duke University, and the University of Copenhagen) for 48 avian species
representing each order of the Neognathae infraclass (Table 2) and two Palaeognath orders (110-
112), and complemented by a group of reptilian outgroup species genomes, the American alligator
(A. mississippiensis) (93) green sea turtle (C. mydas) (96), and green anole lizard (A. carolinensis)
(87). In a December 2014 release of some 28 papers published in Science, Genome Biology, and
other outlets, the richest comparative genomics analysis of any vertebrate group has appeared.

The findings of the collaborative Avian Phylogenomics Group address a wide variety of inquiries
that we shall mention here only briefly, referring the reader to the more detailed reports for added
substance (111-113; see also http://www.sciencemag.org/content/346/6215/1308.short and http://
www.sciencemag.org/content/346/6215/1308/suppl/DC1). For starters, the studies provided a ro-
bust redrawing of the phylogenetic history of avian orders and a genomics inquiry into the making of
a bird, or rather a bird genome (Figure 3). The findings help resolve the debate on the timing of the
Neoaves divergence, dating it to around 66 Mya in a nearly starlike, big bang radiation of species.
Targeted genomic screens for association were offered for special adaptations that are unique to birds,
including vocal learning, skeletal adaptations to flight, feather development, dietary and developmental
components to endentulism (toothlessness), wide-wavelength visual capacity, sex determination,
sexual adaptations, behaviors, plumage color varieties, endogenous retroviral footprints, genome
contraction relative to reptiles and mammals, genome exchange breakpoints, and ecological ac-
commodation. Inspired by their own success, the G10K example, and the vast biospecimen collections
already inventoried, the Avian Phylogenomics Group and an international consortium of scientists are
pursuing a Bird 10K initiative to capture whole genome sequences for every living bird species.

The avian phylogenomic efforts have also addressed and informed many of the bioinformatics
challenges listed here that in turn inform all envisioned interspecies comparative genomic efforts.
Better ad hoc phylogenetic algorithms were developed and more robust and comparable assem-
blies and alignment stipulations were tested with real species by the bird exercise. In many ways,
the genomes generated from the 48 bird species offer a refreshing preview to the hopes and perils of
the coming adventures for the G10K Project.

MAMMALS

Mammals comprise approximately 9% of the total diversity of vertebrates, but they have received
a disproportionate focus from WGS studies. This no doubt stems from the fact that humans are
nested among the eutherian mammals and that understanding the genomes of our closest mam-
malian relatives will provide insights into our own biology. A recent comparative genomic analysis
of the functional elements among 29 eutherian genomes showed that up to 5.5% of the human

Figure 3

Consensus phylogeny of the major lineages of birds. In parentheses are the number of living species as defined
by Howard and Moore (277), with the exception of the Passerine species count, which is taken from (1) /
number of species with published and/or pending genomes (Tables 2 and 3). Data include both those genomes
published to date as listed in Table 2 and those currently undergoing final assembly and annotation as part of
the Avian Phylogenomic Consortium (Table 3). The underlying time-calibrated phylogenetic tree is

a composite of the Neognath phylogeny published by Jarvis et al. (112) and Palacognath phylogeny published
by Mitchell et al. (278). Illustrations courtesy of Jon Fjelda.
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genome has evolved through purifying selection and also allowed identification of ~4.2% of the
genome that is comprised of constrained bases (i.e., nucleotide positions that show conservation
across most or all 29 eutherian genomes) (114). Moreover, this analysis provided strong evidence
for the dispersal of transposable elements across mammalian genomes and the accelerated
evolution of specific elements along the primate lineage. The mammal and bird genome studies
illustrate a timely glimpse of the profound insights gained when a large number of phylogenetically
diverse genomes are analyzed in a comparative context.

Many but not all projects for sequencing mammalian genomes were initiated at major genome
sequencing centers (the Broad Institute, the Genome Institute at Washington University, Baylor
College of Medicine Human Genome Sequencing Center, and BGI-Shenzhen). Species targeted for
de novo sequencing by these research centers and independent groups have been sampled from
across the mammalian supra-ordinal groups (Monotremata, Marsupialia, Afrotheria, Laurasiatheria,
Euarchontoglires, and Xenarthra). Emphases have concentrated among four orders of mammals:
Carnivora (cats, dogs, bears, and their allies), Cetartiodactyla (ungulates, dolphins, and whales),
Primates (great apes and monkeys), and Rodentia (mice, rats, and allies) (Tables 2 and 3) (Figure
4). Eutherian mammalian outgroups for which there are published genome sequences include two
marsupials and one monotreme mammal (Table 2). The number of mammals sequenced has risen
to 111 (66 published and 45 near completion) (Tables 2 and 3). Indeed, 41% of accomplished
vertebrate genome sequence analyses involve mammals.

The mammal species selected for WGS by the initial BGI-G10K collaboration were chosen for
reasons described previously (1) with attention to avoiding competitive overlap between the different
genome sequencing centers. This has provided an opportunity to begin filling in the branches of the
mammal tree of life by focusing on family-level representatives and/or closely related species (Figure
4). Our selection from Carnivora includes four species of large cats (tiger, Panthera tigris; African
lion, Panthera leo; cheetah, Acinonyx jubatus; and American puma, Puma concolor). Combined
with the felid genome projects being carried out by other research groups, this means that reference
genomes will be available for four of the eight major lineages of the Felidae (115). The largest focus of
the BGI-G10K collaborative project is in the Cetartiodactyla, with 16 species targeted for de novo
sequencing, for which draft assemblies have been completed for 11 species, with a dozen more in
progress. Species in this group were chosen not only to address questions related to domestication
and understanding of the genetic basis of particular adaptations [e.g., high-altitude adaptation in the
domestic yak (116)] butalso with an emphasis on understanding the role of genomic architecture and
chromosomal rearrangement in genome and organismal evolution (e.g., Reference 42). Primate
studies have received focused efforts owing to interest in organization, evolution, and adaptation of
the human genome (117). Studies of great apes, including chimpanzees, bonobos, gorillas, and
orangutans, have contributed insights into population expansions and reductions as well as phy-
logeography of our closest relatives, all of which are endangered species (e.g., Reference 118).

The G10KCOS identified several broad research themes that will be used to choose the next
round of mammal species for WGS. Species were chosen not only based on their phylogenetic
distribution but also with regard to addressing fundamental questions in evolution, behavior,
ecology, physiology, and conservation. For example, pairs or groups of species from canids to Old
World primates were identified that could be used to address fundamental questions on the
genomics of speciation, such as the identification of regions (or islands) of high divergence that
may be involved in reproductive isolation that change in size and dimension over time (see, e.g.,
Reference 119). Another theme revolved around comparing species, particularly within bats and
marsupials, that differ dramatically in metabolic rate and how this relates to differences in body
size and longevity (e.g., Reference 120). Many mammals, such as bears, squirrels, bats, and
opossums, undergo hibernation as part of their life history, and therefore, pairs of species within
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each of these groups were identified for WGS to explore the genomic basis of hibernation and the
ability to deal with deleterious effects of hibernation (e.g., Reference 121). Finally, given the
potential revolutionary impact of genomics on conservation genetics and management (122),
several species will be targeted for WGS that are amenable to addressing fundamental questions
related to inbreeding and outbreeding depression, disease resistance, and use of genomic in-
formation to guide and inform deextinction efforts.

ANCIENT VERTEBRATE PALEOGENOMES

Although de novo genome sequencing of extant species exploits high-quality DNA extracted from
purposefully collected tissues, another topic that fires the public imagination is paleogenomics—
the sequencing and analysis of genome-scale information from historic or ancient samples,
particularly those representing extinct species. Until recently, the sequencing of paleogenomes
would have been inconceivable, owing to the sheer number of PCR-based Sanger sequencing
reactions required to recover the gigabases of information within a preserved eukaryotic cell.
Following publication of draft genomes of ancient humans, horses, and extinct species of
Neandertals, Denisovans, the woolly mammoth, and passenger pigeons, popular perception has
moved from asking if paleogenomes can be sequenced to when it will happen (124-128).

Considerable challenges to paleogenomic sequencing remain, however. Firstly, although the
achievements thus far are undeniably impressive, the financial and physical resource requirements
for paleogenomic sequencing remain beyond the capabilities of most research programs. Sec-
ondly, although experimental protocols for isolating paleogenomic data have improved consid-
erably within the past several years, different preservation contexts clearly require different
experimental approaches, and the field remains in the early stages of fully understanding how and
why DNA is sometimes preserved. Thirdly, even if specimens are identified that contain high
concentrations of target DNA relative to DNA from exogenous sources that colonize the sample
postmortem, this target DNA will be heavily fragmented and damaged, precluding the generation
of large-insert libraries or ultra-long reads that are critical for scaffolding de novo genome as-
semblies. As a result, most extinct genomes will, at best, be assembled via mapping to high-quality
genomes of extant relative species—the success of which is limited by evolutionary distance. For
example, extrapolation from in silico and experimental data sets based around mapping ancient
sequencing reads to various mammal genomes suggests that at 5-6 My divergence (e.g., elephant-
mammoth), 60-80% of the genome will map, whereas at >60 My (e.g., moa-extant ratite), success
could fall below 20% (129, 130).

THE GENOMIC ROAD AHEAD

The G10K Project has fostered and witnessed many accomplishments and discoveries since its
inception in 2009. The number of vertebrate species for which whole genomes are being produced
or have been published has increased dramatically and will likely continue to rise exponentially in
the future. By bringing together biologists, bioinformaticians, and computational scientists, the

Figure 4

Consensus phylogeny of the major lineages of mammals. Topology and dates (Ma) are consensus estimates
derived from References 1 and 276 and included citations. Following the common names of taxon groups in
parentheses are the number of living species for that group and number of species with published and/or
pending genomes (see Tables 2 and 3).
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G10KCOS has tried to lead the way in establishing best practices in biospecimen collection and
preparation as well as in genome assembly and alignment. As we have shown in this review, such
efforts will need to be applied to other areas of analysis, especially for genomes of large size. The
successes so far provide optimism for the future. Genome science continues to be a dynamic field
with advancing technologies. Although the vast majority of genome sequencing performed today
is on the Illumina platform, and assembly algorithms are dominated by de Bruijn graphs, this may
not be true in five years. It is difficult to estimate how genome science will change in the next
decade. There are a variety of exciting new technologies, but it is impossible to perform cost-
benefit analyses without the products themselves and the algorithms designed to use them.
These advances afford new opportunities for elucidating the changes in genome structure and
sequence that have resulted in the diversity of vertebrate life. The generation of reference genomes
is finding application in health and well-being of humans and other vertebrates and is being ap-
plied to efforts for stewardship of our planetary biodiversity and efforts to conserve species
threatened with extinction.
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